


# Quadrotor Collision Avoidance/Recovery

# Problem Statement

Quadrotors are susceptible to colliding with its surrounding environment due to faulty piloting, unexpected wind blasts, obstacle avoidance, and many more since many commercial quadrotors are not equipped with a reactive environment-awareness system.

# Duncker Diagram



# Constraint Matrix

|                             | Aesthetics | Size | Weight | Cost | Durability | Sensor Capability | Visual Range | Speed & Agility | Time of Flight | Morphability & Flexibility | Testing Environment | Hardware | Grasping & Transportability | Total |
|-----------------------------|------------|------|--------|------|------------|-------------------|--------------|-----------------|----------------|----------------------------|---------------------|----------|-----------------------------|-------|
| Aesthetics                  | -          | 0    | 0      | 0    | 0          | 0                 | 0            | 0               | 0              | 0                          | 0                   | 0        | 0                           | 0     |
| Size                        | 1          | -    | 0.5    | 1    | 0          | 0                 | 0            | 0.5             | 0.5            | 0                          | 1                   | 0.5      | 0                           | 5     |
| Weight                      | 1          | 0.5  | -      | 1    | 0.5        | 0                 | 0            | 0.5             | 1              | 0                          | 1                   | 0        | 0.5                         | 6     |
| Cost                        | 1          | 0    | 0      | -    | 0          | 0                 | 0            | 0               | 0              | 0                          | 0                   | 0        | 0                           | 1     |
| Durability                  | 1          | 1    | 1      | 1    | -          | 0.5               | 0.5          | 1               | 1              | 0.5                        | 1                   | 0.5      | 1                           | 10    |
| Sensor Capability           | 1          | 0.5  | 1      | 1    | 1          | -                 | 1            | 1               | 1              | 0.5                        | 1                   | 1        | 1                           | 11    |
| Visual Range                | 1          | 1    | 1      | 1    | 0          | 0.5               | -            | 1               | 1              | 0.5                        | 1                   | 1        | 1                           | 10    |
| Speed & Agility             | 1          | 0.5  | 0.5    | 1    | 0.5        | 0                 | 0.5          | -               | 1              | 0                          | 1                   | 0        | 0.5                         | 6.5   |
| Time of Flight              | 1          | 0.5  | 1      | 1    | 0          | 0.5               | 0.5          | 1               | -              | 0                          | 1                   | 1        | 1                           | 8.5   |
| Morphability & Flexibility  | 1          | 1    | 1      | 1    | 1          | 0.5               | 0.5          | 1               | 1              | -                          | 1                   | 1        | 1                           | 11    |
| Testing Environment         | 1          | 0    | 0      | 0.5  | 0          | 0                 | 0            | 0               | 0              | 0                          | -                   | 0        | 0                           | 1.5   |
| Hardware                    | 1          | 0    | 0.5    | 1    | 0.5        | 0.5               | 0.5          | 0.5             | 1              | 0.5                        | 1                   | -        | 1                           | 8     |
| Grasping & Transportability | 1          | 0.5  | 1      | 1    | 0          | 0                 | 0            | 0.5             | 0              | 0.5                        | 1                   | 1        | -                           | 6.5   |

# Weighting Factors

|                           |     |                             |
|---------------------------|-----|-----------------------------|
| Critical Objectives       | 200 | Morphability & Flexibility  |
|                           | 185 | Sensor Capability           |
|                           | 170 | Visual Range                |
|                           | 155 | Durability                  |
|                           | 140 | Time of Flight              |
| Significant Objectives    | 125 | Hardware                    |
|                           | 110 | Speed & Agility             |
|                           | 95  | Grasping & Transportability |
|                           | 80  | Weight                      |
|                           | 65  | Size                        |
| Non-compulsory Objectives | 50  | Testing Environment         |
|                           | 35  | Cost                        |
|                           | 20  | Aesthetics                  |

# Decision Matrix

| Objectives              | Morphability & Flexibility         | Sensor Capability | Visual Range | Durability | Time of Flight | Hardware | Speed & Agility | Grasping & Transportability | Weight | Size  | Testing Environment | Cost | Aesthetics |       |
|-------------------------|------------------------------------|-------------------|--------------|------------|----------------|----------|-----------------|-----------------------------|--------|-------|---------------------|------|------------|-------|
| Weights                 | 200                                | 185               | 170          | 155        | 140            | 125      | 110             | 95                          | 80     | 65    | 50                  | 35   | 20         | Total |
| Alternate Designs       | Rate Value / (Rate Value × Weight) |                   |              |            |                |          |                 |                             |        |       |                     |      |            |       |
| Morphing (ProActive)    | 10/2000                            | 10/1850           | 8/1360       | 4/620      | 8/1120         | 5/625    | 9/990           | 4/380                       | 3/240  | 4/260 | 2/100               | 1/35 | 1/20       | 9600  |
| Non-morphing (Reactive) | 5/1000                             | 10/1850           | 8/1360       | 10/1550    | 5/700          | 5/625    | 10/1100         | 2/190                       | 3/240  | 4/260 | 1/50                | 1/35 | 1/20       | 8350  |

Chosen Design: Morphing

# Problem Decomposition

- Construct a budget/cost analysis alongside a constraint & decision matrix.
- A lot of parameters that need to be considered so developing this morphing quadrotor would require smaller problems to solve.
- These are some of the main tasks/problems we would have to encounter when developing this morphing quadrotor.
- Ultimately, we want to use existing knowledge of a quadrotor but make the process more efficient.

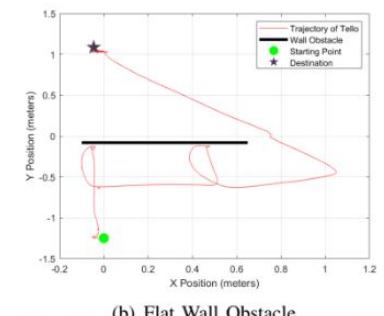
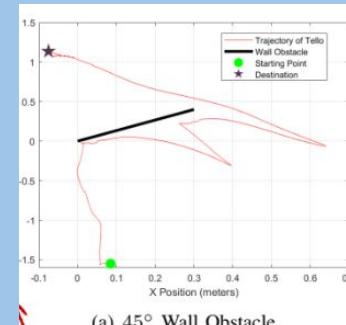


# Problem Decomposition

## General Procedure

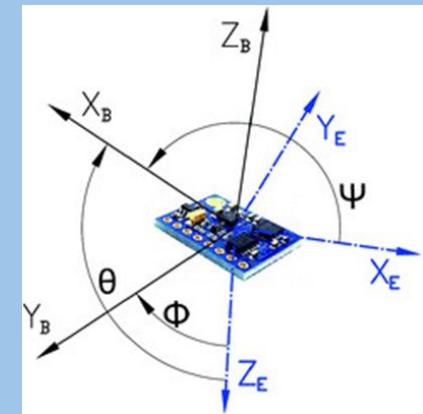
- Detection → Logic → Recovery

## Detection



- Distance sensors
  - Sense distance from quadrotor to wall
- Accelerometer
  - Sense acceleration and calculate jerk towards wall

## Logic

- Servos & PWM
  - Calculate thrust force and angular acceleration of rotors needed
  - Speed of morphing based on intensity of acceleration and jerk
- IMU Sensor
  - Measure desired angular velocity and detect motion in x-y-z plane


## Recovery

- Stabilization
  - Compute desired acceleration using intensity (preferably done by Fuzzy Logic Process)
  - Bring quadrotor to a hover
  - Stabilize altitude
- Trajectory Replanning
  - Use PID-controller
  - Use artificial potential fields (going down in PE)



# Needed Materials

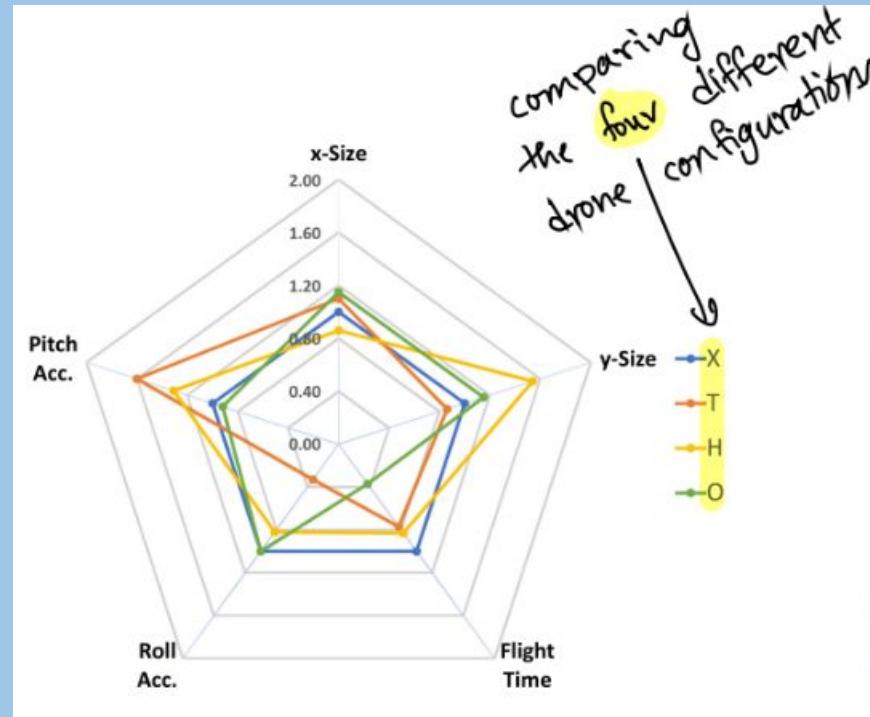
- The following are some materials we listed:
  - Quadrotor
  - IMU Sensor/Accelerometer, Distance & Sound Sensors
  - Servos (Learning how to deal with Pulse Width Modulation aka PWM)
  - Arduino Board (for starting but maybe even developing a printed circuit board to limit lots of wiring)
    - A common technique used to vary the width of the pulses in a pulse-train. PWM has many applications such as controlling servos and speed controllers, limiting the effective power of motors and LEDs.
  - Inertia & Torque Calculators
  - Bumpers (in case of collision)
    - We will be testing a lot, and sometimes some collisions can damage the drone.
  - Controller
- Cost Analysis will be created once all materials are finalized.



Including a IMU Sensor (gyroscope)  
for additional data



# Skills

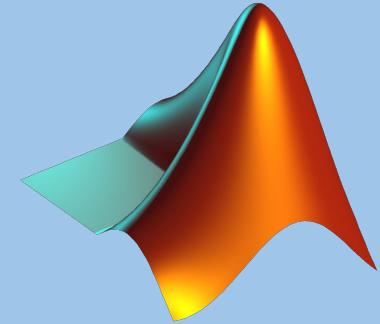

- Need to learn
  - Python
  - More MATLAB
  - **ROS**
    - CAD: CAM and FEA
- Learned
  - c++
  - CAD
  - Arduino

# Important Papers

- ‘The Foldable Drone: The Morphing Quadrotor That can Squeeze and Fly’
- ‘Fly-Crash-Recover: A Sensor-based Reactive Framework for Online Collision Recovery of UAVs’
- ‘Dynamics of a Quadrotor Undergoing Impact with a Wall’
- ‘Quadrotor Collision Characterization and Recovery Control’

# Paper Takeaway - ‘The Foldable Drone: The Morphing Quadrotor That can Squeeze and Fly’

- 4 different configurations: X- Standard, H- narrow gaps, O- horizontal gap, T- shape proximity inspection of vertical surfaces.
- X - Standard configuration yielded the best results and was the “default” mode
- T - shape yielded best results for pitch acceleration
- H - shape yielded best results for size
- Morphing causes a drop in the hover time




# Softwares

- MATLAB
- CAD (Fusion 360, SolidWorks, Inventor, Catia)
- Python
- c++
- ROS

# Tools

- 3D Printer



# ROS - Robot Operating System - Why

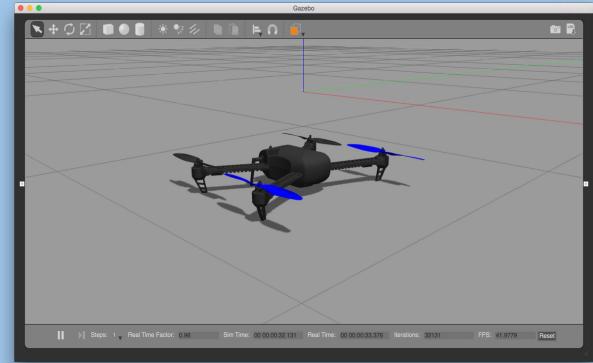
- Provides a standard for robotic applications
- Can be used on any robot
- Ability to connect robotic system



## When

- Cramming of too many components (sensors, accelerometers, servos, motors, etc.)
- A lot of communication required within its sub-programs
- ROS is appropriate in complicated robotic systems

## What


- Allows for separation of code and has communication tools (joystick, motor, camera, etc.)
- ★ Plug and Play Libraries - big time saver and has many functions like motion planning, obstacle avoidance, etc.
- ★ Language Agnostic - i.e. joystick could be coded in c++ and motor in python

# Simulations

- Important to develop a simulator to predict quadrotor response to obstacle and even collisions
- Helpful for developing recovery maneuvers

Software used: MATLAB

- Can use ode45 to solve ODEs which is useful for all the mathematical equations derived in the papers
- Simulator developed in “Dynamics ... Wall” paper had a 71.4% success rate with 5 out of 7 simulations matching their corresponding physical experiments
- **Monte Carlo** simulation used in “Quadrrotor Collision ... Control” paper
  - Used different variables to simulate quadrotor recovery under different conditions
  - In 10,000 trials, 91.9 % of the trials covered full recovery responses
  - Use of Fuzzy Logic Process (FLP) was important as it was used to determine the intensity of each collision

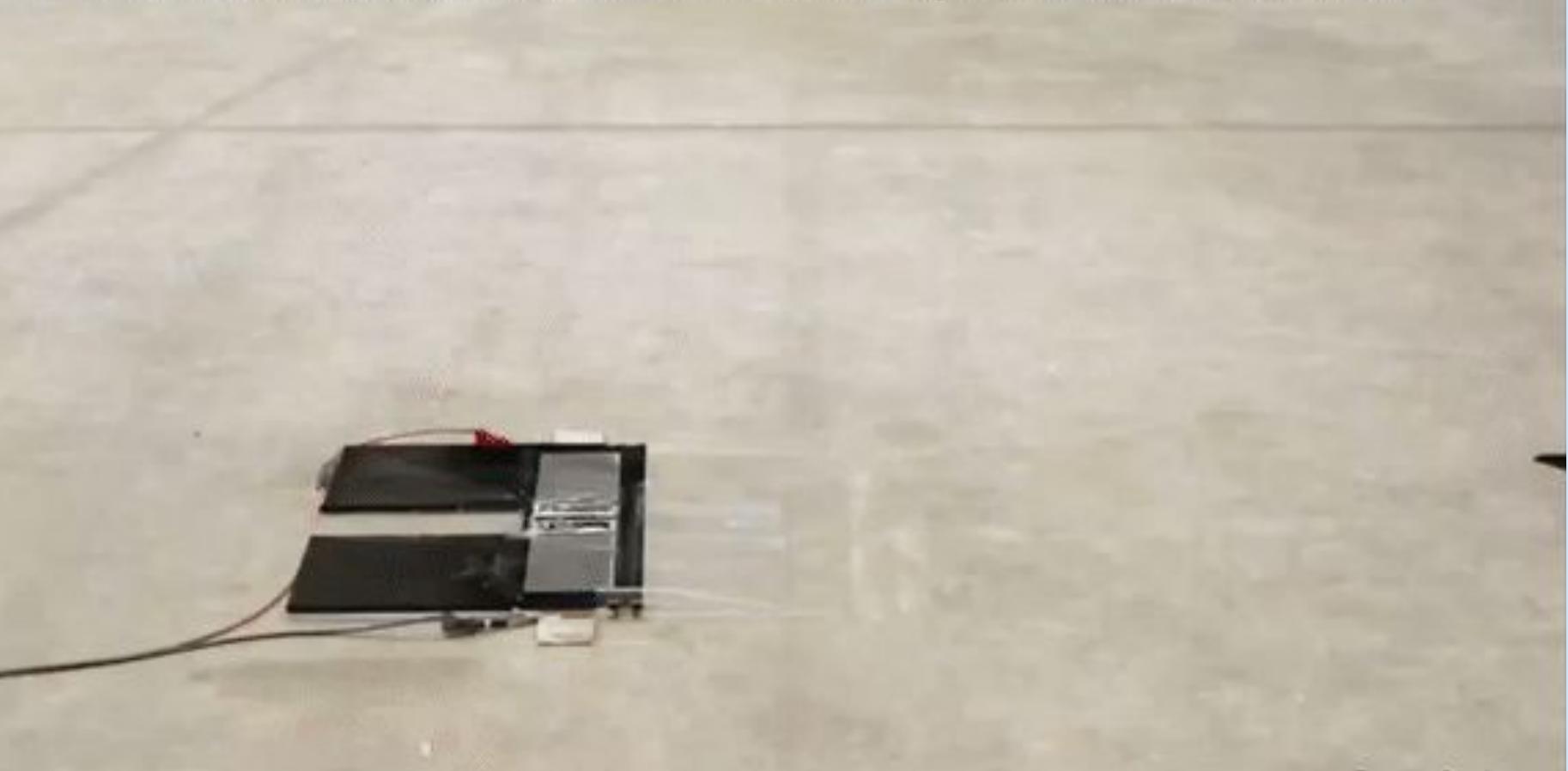


# Important Points

- Drawbacks
  - Papers researched quadrotors colliding with small velocities
  - Paper that specialized in morphing had slow actuated joints
- Solution
  - Smaller the quadrotor, the faster the morphing
  - High speed servos (with PWM)
    - Savox 1257tg
- Adaptive Control Scheme needed
  - Takes into account geometry of morphed quadrotor and calculates geometric properties (contact geometry)

# Mathematical Procedure

- All papers have very similar calculations
  - Using position vectors
    - Used to find point of contact
  - Center of Gravity
  - Inertia
    - MOI can be split into different parts (body, arm, motor, rotor, etc.)
  - Linear acceleration
  - Angular velocity
  - Desired force and thrust (normal forces)
  - Angle of inclination toward wall/obstacle
  - Generation of P.E. field and going down in P.E.
- Done in MATLAB
  - Tons of graphs as well




# Next Steps

Since both of us will not be on campus for Summer 2, progression will have to be remote.

- More Readings (particularly ones are Morphing Quadrotors as we finalized that idea of a drone would be best for us) to gather more ideas regarding the dynamics and controls of the drone.
- Modifications to Matrix/Quantitative Results we need to show.
- Find a quadrotor we want to use and identify what parts to modify.
- Cost Analysis and Finalize Materials.
- CAD-ing the propellers or other parts of the drone we would like to modify.
- Different Ideas of Morphing:
  - [https://rpg.ifi.uzh.ch/foldable\\_drone/](https://rpg.ifi.uzh.ch/foldable_drone/) (We sent this link before on Teams)
  - [https://video.vt.edu/media/t/1\\_og4ur93z](https://video.vt.edu/media/t/1_og4ur93z)

BY MORPHING BETWEEN MULTIPLE STABLE, LOAD BEARING STATES

